

Webinar Series

NAIADES Workshop: Modelling & Al, and state analysis tools

ONLINE

Join Us!

Organised by

NAIADES Speakers

Vitens

External Speakers

Some info

This session will be entirely recorded and published on the NAIADES channels.

Y LJ	۲¢

Feel free to post your questions in the chat.

G

Please feel free to share your thoughts about the workshop on Twitter, via:

@naiadesproject, using
#NAIADESwebinars

Moderation by:

Aristotelis C. Tagarakis Centre for Research and Technology Hellas (CERTH)

- Model-based optimisation for optimal operation of Water Distribution Systems Leonardo Alfonso, IHE-Delft (NL)
- Training session on States Analysis tool Alenka Guček, Jožef Stefan Institute (SLO)
- Vitens: A digital water factory Mario Castro Gama, Vitens (NL)
- Wrap-up and Discussion

Speakers

Leonardo Alfonso IHE-Delft (NL)

Model-based optimisation for optimal operation of Water Distribution Systems Leonardo Alfonso, IHE-Delft (NL)

Water Distribution Systems

Water Distribution Systems

- Ideally, a WDS should:
 - Supply continuously (network always pressurized)
 - Supply every point with a certain pressure
 - Transport safe water
 - Water age
 - Leakages
 - Residual Chlorine

Water Distribution Systems are complicated

- WDS can be either branched or looped networks
- Water demands change in time
- Water may change direction in time
- Path followed by a drop of water is not trivial to estimate
- Many possibilities to operate / control them
 - Valves
 - Tanks
 - Hydrants
 - Pumps

Modelling for control / operation

$$H_i - H_j = h_{ij} = rQ_{ij}^n + mQ_{ij}^2$$

$$\sum_{j} Q_{ij} - D_i = 0 \qquad \text{for } i = 1, \dots N.$$

The Water Network Tool for Resilience (WNTR)

Python package designed by Sandia National Laboratories and the US Environmental Protection Agency to simulate and analyze resilience of water distribution networks.

- Modify network structure and operations
- Add response/repair strategies
- Simulate pressure dependent demand and demand-driven hydraulics
- Simulate water quality
- And more...

Klise, K.A., Murray, R., Haxton, T. (2018). An overview of the Water Network Tool for Resilience (WNTR), In Proceedings of the 1st International WDSA/CCWI Joint Conference, Kingston, Ontario, Canada, July 23-25, 075, 8p.

Julian Blank (blankjul [at] egr.msu.edu) Michigan State University

J. Blank and K. Deb, pymoo: Multi-Objective Optimization in Python, in IEEE Access, vol. 8, pp. 89497-89509, 2020, doi: 10.1109/ACCESS.2020.2990567

Interface

Problems

Rosenbrock, Zakharov, ...

İĭ

Function: minimize Parameters: Problem, Algorithm, Termination Optionals: Callback, Display, ... Returns: Result

Related: Ask and Tell 🚾 , Checkpoints

Welded Beam, ZDT, ... Many-objective: DTLZ, WFG Constrained: CTP, DASCMOP, MODAct, MW, CDTLZ

Multi-objective: BNH, OSY, TNK, Truss2d,

Single-objective: Ackley, Griewank, Rastrigin,

Related: Problem Definition, Gradients, Parallelization

Q Algorithms

Single-objective: GA, DE 🔤 , PSO, Nelder Mead, Pattern Search, BRKGA, ES 🔤 , SRES 🔄 , ISRES 🔄 , CMA-ES

Multi-objective: NSGA-II, R-NSGA-II Many-objective: NSGA-III, R-NSGA-III, U-NSGA-III, MOEA/D, AGE-MOEA

Related: Reference Directions, Constraint Handling, Convergence

Customization

Variable Types: Binary, Discrete, Permutation, Mixed, Custom

Examples: Biased Initialization, Subset Selection, Traveling Salesman

Download and install EPANET

Download handout from the given link

11/10/2022 NAIADES Workshop - Modelling & AI, and state analysis tools

Demonstration of automatic optimization using WNTR and PYMOO

NAIADES Webinar

15 June 2022

Optimisation of Water Distribution Networks with PYMOO and WNTR libraries

Follow us on social media

@naiadesproject

5

@naiadesproject

www.naiades-project.eu

Speakers

Alenka Guček Jožef Stefan Institute

Alenka Guček, Jožef Stefan Institute (SLO)

Motivation

- Multivariate timeseries visualizations issues:
 - Overlap of data points
 - Missing interaction between variables
 - Difficult to interpret
- User has to zoom, isolate needed variables and remove the others

NEED FOR A BETTER ANALYTICAL TOOL!

(NAIADES 4.4, AI empowered critical water consumption monitoring)

Sun et al, 2013, Atmospheric Chemistry and Physics

Our solution

Our approach is abstraction of timeseries data to states and transitions Abstraction is hiearchical (data can be observed on several levels/scales of detail)

Methodology

Luka Stopar

- (a) Static time series embedding
- (b) Constuction of states
- (c) Transitions between states
- (d) Hiearchy
 - Mean-linkage aggromerative clustering (based on a distance)
 - Iterative min-cut based splitting (based on transitions)

Visual representation

- Timeseries drawn as a static graph
 - States are nodes
 - Transitions are edges

Hierarchical strucutre

Vertically: Granulation (expansion/collapse) of states

Horizontally: Minimal transition rates

Auxilary views

Analysis of a single state:

- State history window
- Histograms to show its distribution compared to overall state
- Temporal granularity
 - Daily
 - Weekly
 - Monthly
 - Yearly

Data input

- Settings (optional):
- Offline models (.csv format)
- Online models (data from NAIADES service)
- UNIX timestamp is required (atm)!

NALADES
Webinar Series

You can choose from predefined data so source must implement API, defined here	purces or configure your own <u>e</u> .		
Data source		- +	- ADD
Name Name			
Edit data source			
Name Description online model for URL	-		
From 01/10/2021 12:00	To		
Interval 3600		me unit — econds	•
	CAN	ICEL	SAVE

Setting alerts on non-wanted states

NAIADES Workshop - Modelling & AI, and state analysis tools

Demo

http://atena.ijs.si:8080/login

Follow us on social media

@naiadesproject

5

@naiadesproject

www.naiades-project.eu

Speakers

Mario Castro Gama Vitens (NL)

Vitens: A digital water factory

Mario Castro Gama, Vitens (NL)

Panel discussion & Wrap-up

Follow us on social media

@naiadesproject

5

@naiadesproject

www.naiades-project.eu